Paths of the Planets (2024)

This Fall (2009)we will be able to observe just one bright planets. Jupiter is well-placed for viewing in theevening sky throughout the semester.

Background Reading: Stars & Planets, p.298 to 301 (The Solar System)

As seen from the Earth, the Sun, Moon,and planets all appear to move along the ecliptic.More precisely, the ecliptic is the Sun's apparent path among the stars overthe course of a year. (Of course, it's actually the Earth that moves about theSun, and not the other way around, but the result of our orbital motion is thatthe Sun seems to move against the stellar backdrop.) The planets don't remain exactlyon the ecliptic, but they stay pretty close to it at all times.

Unlike the Sun, however, the planetsdon't always move in the same direction along the ecliptic. They usuallymove in the same direction as the Sun, but from time to time they seem to slowdown, stop, and reverse direction! This retrograde motion was agreat puzzle to ancient astronomers. Copernicus gave the correct explanation:all planets move around the Sun in the same direction, and retrogrademotion is an illusion created when we observe the other planets from our movingpoint of view, the planet Earth.

It's easiest to understand the retrogrademotion of Mercury and Venus. These inner planets are closer to the Sun than weare, and they orbit the Sun faster than we do. From our point of view, the Sunmoves slowly along the ecliptic (due, of course, to our orbital motion),while Mercury and Venus run rings around the Sun. So at some times we see themmoving in the same direction as the Sun, while at other times we see themmoving in the opposite direction. For Mars, Jupiter, Saturn, Uranus, Neptune,and Pluto the explanation is a bit more subtle. These outer planets are furtherfrom the Sun than we are, and they orbit the Sun more slowly than we do. Whenthe Earth passes between one of these planets and the Sun, we see it goingbackwards because we're moving faster than it is.

When the Earth passes between one of theouter planets and the Sun, we see the Sun and the planet in opposite parts ofthe sky; the planet will rise about the time the Sunsets, remain visible all night, and set about the time the Sun rises. At thistime, the planet is said to be in opposition to the Sun.Opposition is a good time to observe an outer planet; it's visible all night,and relatively close to the Earth.

An outer planet's apparent motion is alwaysretrograde for a month or two before and after opposition. The length of timewhen a planet appears retrograde depends on the planet; it's shortest for Mars,and generally longest for Pluto. The moment when a planet'sapparent motion changes direction is called a stationary point,because at that exact instant the planet appears to be stationary with respectto the stars. An outer planet always has one stationary point before opposition, and another stationary point after opposition.

As it turns out, both Jupiter and Saturnwill be in retrograde motion at the start of the semester, and both will haveturned around and gone back to normal motion by the end of the semester. Somepositions of Jupiter and Saturn are shown in the star charts on the next page.In both charts, the ecliptic is shown as a slanting line; the normal directionof planetary motion is West to East, parallel to theecliptic.

<![if !vml]>Paths of the Planets (1)<![endif]>

Positions of Jupiter. The first stationary point is on 12/04/02, opposition is on 02/02/03, and the second stationary point is on 04/04/03; during this entire period, Jupiter's motion with respect to the stars is East to West (retrograde). The stars labeled with Greek letters are Gamma and Delta Cancri, and Lambda Leonis.

<![if !vml]>Paths of the Planets (2)<![endif]>

Positions of Saturn. The first stationary point is on 10/11/02, opposition is on 12/17/02, and the second stationary point is on 02/22/03; during this entire period, Saturn's motion with respect to the stars is East to West (retrograde). The stars labeled with Greek letters are Beta and Zeta Tauri.

TRACKING PLANETARY POSITIONS

The two charts handed out in class onFeb.4th should be used to plot the positions of Jupiter and Saturn. (Youcan get fresh copies by following the links below.) These charts show morestars than you can see with your naked eyes, but under typical urban conditionsmost of these stars will be visible with binoculars. Each chart has a scale of2cm per degree; thus, two stars separated by 0.5° in the sky appear1cm apart on these charts. At the top of each chart is an arrow pointingtoward the Northcelestial pole. Finally, the three small crosses on each chart show thepositions of Jupiter and Saturn during the first three classes of thissemester.

Your assignment is to plot Jupiter andSaturn on these charts every time we observe. This should be pretty routine after a few weeks, and a reasonably complete set ofplotted positions will nicely show the tracks of both planets as they end theirretrograde phases and resume normal (West to East) motion along the ecliptic.Here's how to plot planetary positions:

  1. Align the chart with the sky by holding it up next to the planet and turning it until the arrow points toward Polaris.
  2. Center your binoculars on the planet and look at the surrounding stars. Carefully match the stars you see in your binoculars with the ones shown on the chart. (Note: the transparent overlay handed out with the planet charts shows the field of view of the binoculars - you can use it to help match stars on the chart with those in the sky.)
  3. Look for patterns of stars which include the planet's present position. For example, you might notice that the planet is on a line between two stars, or that the planet and two stars form an equilateral triangle. You'll get better results if you find two or more different patterns; each helps you check the other.
  4. After you've matched the stars on the chart with those in the sky, and found some patterns including the planet, you are ready to plot the planet's position on your chart. Use a pencil to mark its position, and compare your chart with the sky a few times to make sure everything's in the right place.
  5. Once you are satisfied with the position you've plotted, mark the planet's position with ink. Write the date next to the mark you've made. (Note: when the planets are near their stationary points they don't seem to move much, and you may have trouble indicating which date goes with which mark. One solution is to use different colors for different observations.)

The point of this exercise is to trackthe planets over the entire semester as they switch back from retrograde tonormal motion. Don't worry if we miss a few observations due to bad weather; wecan just pick up again when the weather improves. If you want, you can makeadditional observations whenever you have the chance. For example, if we missan observation due to bad weather on Tuesday, you can go out the next clearnight and fill in the gap (of course, always write the current date nextto your mark).

REPORT: PATHS OF THE PLANETS

Make the observations described in thesection on TRACKING PLANETARY POSITIONS, and write a report on your results.This report is due on May6th (the last class of the semester); if theweather is good that night, we won't collect the reports until you've had achance to make one final observation. Your report should include, in order,

  1. an introduction explaining the purpose of the observations,
  2. a description of the observing sites and equipment you used,
  3. a summary of your observational results, and
  4. the conclusions you have reached.

In more detail, here are several thingsyou should be sure to do in your lab report:

  • Explain retrograde motion in your own terms, and discuss its significance for early astronomers.
  • Note any weeks when you found the observations particularly easy (for example, due to bright stars near a planet's position) or difficult (due to a lack of bright stars or whatever).
  • List the last week when each planet was definitely West of the previous position, and the first week when it was definitely East of its previous position.
  • Try to estimate the accuracy of your positions. This is a bit subjective, but you will probably develop some feeling for your margin of error as you gain experience. For example, if you think the positions you plot on these charts are off by less than 0.5cm, your measurements have an accuracy of 0.25° (since these charts have a scale of 2cm per degree).

WEB RESOURCES

  • Chart for Jupiter: GIF file or Postscript.
  • Chart for Saturn: GIF file or Postscript.

These chartsshow 12.7° by 9.5° regions of the sky. If printed at a resolution of 100 dpi,the GIF images have an scale of 2cm per degree;the Postscript plots should automatically print at this scale. The fainteststars shown are magnitude8.5, which is about the limit for our binoculars from Kapiolanipark.

REVIEW QUESTIONS

  • At which time would you expect Venus to show retrograde motion - when it's between the Earth and the Sun, or when it's on the far side of the Sun as seen from Earth?
  • Suppose that we (on Earth) see Mars moving in a retrograde direction. How would Earth's motion look to an observer on Mars?
  • It takes Jupiter almost exactly 12 years to complete one orbit around the Sun. How many times in that 12-year period will an observer on Earth see Jupiter moving in a retrograde direction?
Paths of the Planets (2024)

FAQs

What is the path of a planet answer? ›

The correct answer is Orbit. An orbit is the path of a planet around the sun.

How to remember the planets in order? ›

The “Very Easy Method” for Remembering the Planets

If you include Pluto, a good mnemonic for the order of the planets is “My (Mercury) Very (Venus) Easy (Earth) Method (Mars) Just (Jupiter) Speeds (Saturn) Up (Uranus) Naming (Neptune) Planets” (Pluto). It's okay to be creative!

What is the answer to all the planets move around the Sun in a tick? ›

Hint: All the planets move around the sun in an elliptical path. Each planet moves on its own path around the sun. and not in a circular motion, it is called Elliptical orbit. All the planets in our solar system move in an elongated path around the sun.

What is the path which each planet moves? ›

Orbit is the path in which planets revolve around the sun.

Why is Pluto no longer a planet? ›

According to the IAU, Pluto is technically a “dwarf planet,” because it has not “cleared its neighboring region of other objects.” This means that Pluto still has lots of asteroids and other space rocks along its flight path, rather than having absorbed them over time, like the larger planets have done.

What is a planet's path? ›

The orbit of every planet is an ellipse with the Sun at one of the two foci. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.

Which planet is considered as Earth's twin? ›

Venus and Earth are sometimes called twins because they're pretty much about the same size. Venus is almost as big as Earth. They also formed in the same inner part of the solar system. Venus is in fact our closest neighbor to Earth.

What is the fixed path of the planets around the Sun called? ›

Statement 2: Planets revolve around the sun in a definite path known as orbit.

What is the path a planet moves around the Sun in? ›

The path of the planets around the Sun is called an ORBIT. That's why they say planets orbit the Sun. They are elliptical in shape.

What is the path around a planet called? ›

An orbit is a regular, repeating path that one object in space takes around another one.

What are the paths that planets follow? ›

An orbit is a regular, repeating path that one object takes around another object or center of gravity. Orbiting objects, which are called satellites, include planets, moons, asteroids, and artificial devices. Objects orbit each other because of gravity.

Which planet can float on water? ›

Saturn is very large and is the second largest planet in the Solar System. However, it is made up mostly of gas and is less dense than water. Since it is lighter than water, it can float on water. None of the other planets in our Solar System can do this because they have a higher density than water.

What is the path taken by the planet? ›

The path of a planet around the Sun is called the orbit.

What is the fixed path of a planet called? ›

All planets revolve around the sun in a definite or fixed path known as orbit.

What is the path of the Earth called? ›

Q. The earth keeps revolving around the sun, in an elliptical path called the orbit of earth.

Top Articles
Latest Posts
Article information

Author: Dan Stracke

Last Updated:

Views: 5681

Rating: 4.2 / 5 (43 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Dan Stracke

Birthday: 1992-08-25

Address: 2253 Brown Springs, East Alla, OH 38634-0309

Phone: +398735162064

Job: Investor Government Associate

Hobby: Shopping, LARPing, Scrapbooking, Surfing, Slacklining, Dance, Glassblowing

Introduction: My name is Dan Stracke, I am a homely, gleaming, glamorous, inquisitive, homely, gorgeous, light person who loves writing and wants to share my knowledge and understanding with you.